2,120 research outputs found

    Control sideband generation for dual-recycled laser interferometric gravitational wave detectors

    Get PDF
    We present a discussion of the problems associated with generation of multiple control sidebands for length sensing and control of dual-recycled, cavity-enhanced Michelson interferometers and the motivation behind more complicated sideband generation methods. We focus on the Mach–Zehnder interferometer as a topological solution to the problem and present results from tests carried out at the Caltech 40 m prototype gravitational wave detector. The consequences for sensing and control for advanced interferometry are discussed, as are the implications for future interferometers such as Advanced LIGO

    Demonstration of detuned dual recycling at the Garching 30m laser interferometer

    Get PDF
    Dual recycling is an advanced optical technique to enhance the signal-to-noise ratio of laser interferometric gravitational wave detectors in a limited bandwidth. To optimise the center of this band with respect to Fourier frequencies of expected gravitational wave signals detuned dual recycling has to be implemented. We demonstrated detuned dual recycling on a fully suspended 30m prototype interferometer. A control scheme that allows to tune the detector to different frequencies will be outlined. Good agreement between the experimental results and numerical simulations has been achieved.Comment: 9 page

    Genome-scale models as a vehicle for knowledge transfer from microbial to mammalian cell systems

    Get PDF
    With the plethora of omics data becoming available for mammalian cell and, increasingly, human cell systems, Genome-scale metabolic models (GEMs) have emerged as a useful tool for their organisation and analysis. The systems biology community has developed an array of tools for the solution, interrogation and customisation of GEMs as well as algorithms that enable the design of cells with desired phenotypes based on the multi-omics information contained in these models. However, these tools have largely found application in microbial cells systems, which benefit from smaller model size and ease of experimentation. Herein, we discuss the major outstanding challenges in the use of GEMs as a vehicle for accurately analysing data for mammalian cell systems and transferring methodologies that would enable their use to design strains and processes. We provide insights on the opportunities and limitations of applying GEMs to human cell systems for advancing our understanding of health and disease. We further propose their integration with data-driven tools and their enrichment with cellular functions beyond metabolism, which would, in theory, more accurately describe how resources are allocated intracellularly

    How reliable are Chinese hamster ovary (CHO) cell genome-scale metabolic models?

    Get PDF
    Genome-scale metabolic models (GEMs) possess the power to revolutionize bioprocess and cell line engineering workflows thanks to their ability to predict and understand whole-cell metabolism in silico. Despite this potential, it is currently unclear how accurately GEMs can capture both intracellular metabolic states and extracellular phenotypes. Here, we investigate this knowledge gap to determine the reliability of current Chinese hamster ovary (CHO) cell metabolic models. We introduce a new GEM, iCHO2441, and create CHO-S and CHO-K1 specific GEMs. These are compared against iCHO1766, iCHO2048, and iCHO2291. Model predictions are assessed via comparison with experimentally measured growth rates, gene essentialities, amino acid auxotrophies, and 13C intracellular reaction rates. Our results highlight that all CHO cell models are able to capture extracellular phenotypes and intracellular fluxes, with the updated GEM outperforming the original CHO cell GEM. Cell line-specific models were able to better capture extracellular phenotypes but failed to improve intracellular reaction rate predictions in this case. Ultimately, this work provides an updated CHO cell GEM to the community and lays a foundation for the development and assessment of next-generation flux analysis techniques, highlighting areas for model improvements

    Birefringence-induced losses in interferometers

    Get PDF
    In interferometers one conceivable loss mechanism is depolarization of the light by inherent or thermally induced birefringence in optical substrates or coatings. The magnitude of this effect is determined quantitatively and compared with the losses due to thermal lensing

    Light scattering described in the mode picture

    No full text
    A system of orthonormal functions representing the eigenmodes of an optical resonator with perfectly spherical mirror surfaces has been described in the literature. In real experiments, however, the wave front of the passing beam will be deformed by surface irregularities or index inhomogeneities inside components traversed by the beam. We describe quantitatively the relative power transferred out of the fundamental mode into higher-order modes by these irregularities

    Analysis of a four-mirror cavity enhanced Michelson interferometer

    Full text link
    We investigate the shot noise limited sensitivity of a four-mirror cavity enhanced Michelson interferometer. The intention of this interferometer topology is the reduction of thermal lensing and the impact of the interferometers contrast although transmissive optics are used with high circulating powers. The analytical expressions describing the light fields and the frequency response are derived. Although the parameter space has 11 dimensions, a detailed analysis of the resonance feature gives boundary conditions allowing systematic parameter studies

    Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors

    Get PDF
    Detection of gravitational waves from astrophysical sources remains one of the most challenging problems faced by experimental physicists. A significant limit to the sensitivity of future long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test mass mirrors and their suspensions. Suspension thermal noise results from mechanical dissipation in the fused silica suspension fibers suspending the test mass mirrors and is therefore an important noise source at operating frequencies between ∼10 and 30 Hz. This dissipation occurs due to a combination of thermoelastic damping, surface and bulk losses. Its effects can be reduced by optimizing the thermoelastic and surface loss, and these parameters are a function of the cross sectional dimensions of the fiber along its length. This paper presents a new apparatus capable of high resolution measurements of the cross sectional dimensions of suspension fibers of both rectangular and circular cross section, suitable for use in advanced detector mirror suspensions

    An investigation of eddy-current damping of multi-stage pendulum suspensions for use in interferometric gravitational wave detectors

    Get PDF
    In this article we discuss theoretical and experimental investigations of the use of eddy-current damping for multi-stage pendulum suspensions such as those intended for use in Advanced LIGO, the proposed upgrade to LIGO (the US laser interferometric gravitational-wave observatory). The design of these suspensions is based on the triple pendulum suspension design developed for GEO 600, the German/UK interferometric gravitational wave detector, currently being commissioned. In that detector all the low frequency resonant modes of the triple pendulums are damped by control systems using collocated sensing and feedback at the highest mass of each pendulum, so that significant attenuation of noise associated with this so-called local control is achieved at the test masses. To achieve the more stringent noise levels planned for Advanced LIGO, the GEO 600 local control design needs some modification. Here we address one particular approach, namely that of using eddy-current damping as a replacement or supplement to active damping for some or all of the modes of the pendulums. We show that eddy-current damping is indeed a practical alternative to the development of very low noise sensors for active damping of triple pendulums, and may also have application to the heavier quadruple pendulums at a reduced level of damping
    • …
    corecore